The Analyst’s Toolkit

A Survey of Tools, Techniques and Strategies for Eliciting Requirements
Welcome!

Meet your facilitator…

• Kris Ashton

• Systems Analyst, Consultant, Course Director/Developer, Technical Instructor, Author, Evangelist

• Senior Consulting Partner and Principal with The Center for Requirements Excellence in Denver, CO

• Over 25 years’ experience

Kris chillin’ on the island of Delos in Greece
Overall Strategies

- Use a Methodology
- Use Organic Tools
- Have (or get) Some Domain Knowledge
- Have a Good Set of Tools and Techniques (and know how to use them!)
Use a Methodology
Methodology

• Provides a framework
• Identifies specific work to be done in each phase
• Identifies roles and responsibilities
• General types:
 – Systems Development Life Cycle (SDLC)
 – Product Development Life Cycle (PDLC)
 – Project Management (PM)
 – etc.
Generic SDLC

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>Determine and agree scope of project; discover high-level requirements (business objectives)</td>
</tr>
<tr>
<td>Analysis</td>
<td>Discover detailed business functional requirements</td>
</tr>
<tr>
<td>Conceptual Design</td>
<td>Re-engineer business process(es) and specify high level technology components of solution</td>
</tr>
<tr>
<td>Technical Design</td>
<td>Convert business requirements to technical specifications</td>
</tr>
<tr>
<td>Coding</td>
<td>Develop and test code modules</td>
</tr>
<tr>
<td>Testing</td>
<td>Integration, system, regression, user acceptance testing</td>
</tr>
<tr>
<td>Implementation</td>
<td>Roll out to entire organization or pilot group</td>
</tr>
</tbody>
</table>
Other Methodologies

- Feasibility
- Definition
- Design
- Construction
- Rollout
- Close
- Initiate
- Plan
- Design
- Construct
- Implement
- Operate
- Initiation
- Exploratory Phase
- Alignment Phase
- Development
- Testing
- Installation
- Post-Implementation Review
Use Organic Tools
Use Your Brain

• Understand the business
• Understand the problem to be solved
• Know how to integrate information
• Know what a requirement sounds like (and how to differentiate it from a solution or statement of design)
Use Your Mouth

- Ask the right questions
- Talk to the right stakeholders
Use Your Ears

- Practice effective listening
 - Paraphrasing
 - Questioning
 - Summarizing
Use Your Eyes

• Look around your stakeholders’ space
• Observe business processes
• Examine artifacts
• Watch facial expressions and body language
Have (or Get) Some Domain Knowledge
Domain Knowledge

- Expert analysts. . .
 - Have a repertoire of skills, knowledge and meta-knowledge in a specific domain
 - Have a deep structure knowledge of the domain
 - Verbalize more domain-specific issues during analysis

Have a Good Set of Tools and Techniques
Examine Artifacts

- Forms, reports, listings
- Process descriptions, procedures, workflow diagrams
- Policies
- Job descriptions, organization charts
- Existing information system
- System documentation
- etc.
Examine Artifacts \textit{(continued)}

- **Advantages**
 - Analysts can gain a lot of knowledge about a system prior to interviewing stakeholders
 - Stakeholders are often impressed with the analyst’s knowledge of their system (even if it is wrong, as it happens)
 - Gives analysts credibility

- **Disadvantages**
 - Can be time-consuming
 - Documentation may be non-existent, old or obsolete, or just plain wrong
Interviews

• Non-judgmental collection of information and requirements

• Uses a variety of questioning techniques

• Requires full stakeholder involvement
Interviews (continued)

• Advantages
 – Analyst can motivate stakeholder to speak freely
 – Stakeholder has a sense of contribution
 – Analyst can probe more
 – Analyst can observe facial expression, body language and (possibly) stakeholder space

• Disadvantages
 – Time-consuming and resource-intensive
 – Success is highly dependent on communication skills of analyst
 – Analyst and stakeholders may not be co-located
Focus Groups

• A small collection of stakeholders that are interviewed together

• Usually fewer than 10 participants
Focus Groups (continued)

• Advantages
 – More effective use of time
 – Stakeholders may discover their inconsistent perspectives and resolve them through group discussion
 – Analyst can see where there is consensus and where there are issues to be resolved

• Disadvantages
 – Difficult to schedule
 – Stakeholders must be actively managed
 – Sessions tend to result in some level of conflict among stakeholders
Direct Observation

• Watching individuals or groups, processes and events to determine the facts surrounding a particular process and/or culture within a business environment
Direct Observation (continued)

• Advantages
 – Discover what happens and how it happens
 – Confirm information obtained through other means
 – Can give an analyst a more objective view of the true nature of an event or activity
 – Can show things otherwise missed

• Disadvantages
 – Requires a high level of structure and planning
 – Observation can’t be continuous; shows only a snapshot
 – Is time-consuming
 – Systems being observed tend to change simply because they are being observed
Elicitation Workshops (JAD, JRP, etc.)

- Brings together a large number of stakeholders
- Facilitates and expedites the collection of requirements
- More highly structured than a focus group
- Best if professionally facilitated
Elicitation Workshops (continued)

- **Advantages**
 - More effective use of time
 - Stakeholders may discover their inconsistent perspectives and resolve them through group discussion
 - Analyst can see where there is consensus and where there are issues to be resolved

- **Disadvantages**
 - Difficult to schedule
 - Stakeholders must be actively managed
 - Sessions tend to result in some level of conflict among stakeholders

Same as for Focus Groups
Iterative Prototyping

• Where the basic requirements are converted into a limited working model

• Model can be viewed and tested by stakeholders

• Allows for refinement of requirements early in the development life cycle, before any significant construction of the system occurs
Iterative Prototyping (continued)

• Advantages
 – Rapid changes can be made to find and clarify missing requirements
 – Stakeholders are more apt to accept the final system
 – Represents less of an investment than the final system as proof-of-concept

• Disadvantages
 – The prototype is intended to be thrown away
 – Takes development time and developer resources
 – Tendency to adopt the prototype as the completed system (by the stakeholder, the developer, or both)
Business Modeling

• An analysis technique that uses a variety of models to depict business systems

• Provides a way to think about what is being modeled (a conceptual framework of a system)

• Provides a way to depict what is being modeled (a notation scheme)

• Process model and data model
Business Modeling (continued)

- Advantages
 - Helps analysts understand how the business and/or business process(es) work now
 - Helps analysts understand what the business wants to retain, remove, redesign, or add
 - A very powerful visual tool

- Disadvantages
 - Can be time-consuming
 - Not all projects or systems are complex enough to be modeled
 - With new business processes, only works for the “to be” system
 - Models (and modeling notation) must be understood by business stakeholders and by developers
Model Examples

• **Context Diagram**
 - Depicts our system in the context of the outside world
 - Shows system under study, external entities, and interactions between them (inputs and outputs)
Model Examples (continued)

• Activity Diagram (with Swim Lanes)
 – Depicts actors and the processes they perform
Model Examples (continued)

- Process Flowchart
 - Traditional flowchart
 - Depicts flow of an individual process
 - Only depicts process steps

Start

Write a descriptive name for the process

Determine process inputs

Find missing step(s) and resolve them

Determine sequential steps

All steps resolved?

Yes

Flowchart done!

No
Model Examples *(continued)*

- Use Case
 – Another way to depict process steps

<table>
<thead>
<tr>
<th>Use Case 1: Receive Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
</tbody>
</table>
| **Pre-conditions:** | 1. Customer has sent a payment.
2. Billing system is online. |
| **Post-conditions:** | 1. Payment is posted as a credit to the customer’s account.
2. Payment item is ready to be prepared for deposit. |
| **Normal Course:** | 1. Receive payment
1. A/R Specialist verifies that customer's payment item is valid.
2. A/R Specialist enters reservation number into system
3. System displays customer’s open reservations.
4. A/R Specialist selects open reservation to which payment will be applied.
5. A/R Specialist enters payment amount, type and date.
6. System credits the reservation with the amount of the payment.
7. System adjusts the balance due of the reservation. |
Model Examples (continued)

- Data Flow Diagram
 - Traditional DFD
 - Depicts how the process uses data
 - Only depicts data use and not process steps, conditional branching, etc.

![Data Flow Diagram]

© 2010 Kris Ashton | reprinted with permission by ASPE | Page 34
To Learn More . . .

• Attend (or send your analysts to) our 2-day workshop
 Developing and Confirming Effective Business Requirements
 – Visit www.aspetech.com for a course description
 – Or contact:
 • Kinzie Wyche, Director of Sales
 • kwyche@aspetech.com
 • 919-816-1711

• Visit our website for other course offerings